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Abstract. Generic channel and ridge structures are known to appear in the time-dependent
position probability distribution of a one-dimensional quantum particle confined to a box.
These structures are shown to have a detailed quantitative explanation in terms of a travelling-
wave decomposition of the probability density, wherein each contributing term corresponds
simultaneously to (i) a real wave propagating at a quantized velocity and (ii) to the time-averaged
structure of the position distribution along a quantized direction in spacetime. The approach leads
to new predictions of channel locations, widths and depths, and is able to provide more structural
details than earlier approaches based on partial interference and Wigner functions. Results are also
applicable to light diffracted by a periodic grating, and to the quantum rigid rotator.

1. Introduction

The position probability distributionP(x, t) of a one-dimensional quantum particle may be
represented as a probability landscape in spacetime, where hills and valleys correspond to
regions of high and low probability density, respectively. It has recently been discovered that
generic two-dimensional structures appear across this probability landscape for a wide variety
of potentials and initial conditions [1–4]. The highly patterned nature of these structures has
led to them being called ‘quantum carpets’.

For the simplest case, of a one-dimensional particle moving freely between two end walls,
the carpet patterns are linear, with quantized slopes and intercepts [1–3]. More generally,
however, the patterns are curved for particles moving under the influence of a potential [4–6].
Colour plots of quantum carpets, for a range of examples, may be found in [4,5].

Analogous carpet structures also arise for light diffracted by a one-dimensional periodic
grating in the paraxial approximation [7,8]. In this case the time variablet is replaced by the
propagation distancez of the diffracted beam, andP(x, z) is the intensity distribution of the
beam. Further, it will be seen that a generalized form of these carpet structures arises for the
angular distributionP(φ, t) of the two-dimensional quantum rigid rotator.

Approaches based on interference between energy amplitudes [2,3], Wigner functions [4],
and Green function degeneracies [5,9] have been used to explain the observed carpet patterns
for various cases, and in particular the observed quantization of slopes of the linear structures
for the confined one-dimensional particle is well understood. However, even in this relatively
simple case a number of generic features have not yet been provided with a general explanation,
including the depths and widths of channel structures, the decrease of the latter two quantities
with slope, and the ‘chopped’ nature of ridge structures (see figure 1).

It will be shown in section 2 that such features can be understood, to a limited extent, by
generalizing an approach first developed by Berry [2], based on the destructive interference

0305-4470/99/478275+17$30.00 © 1999 IOP Publishing Ltd 8275



8276 M J W Hall et al

Figure 1. Density plot of (part of) the probability
landscape for the initial wavefunction in (16), with
N = 20. The dark channel observed to run from
the bottom right-hand corner to the top left-hand
corner of the plot corresponds to the trajectory
x = L/3 − 3V t , and is not predicted by the
destructive interference approach.

of energy amplitudes (see also, [3]). This generalizeddestructive interferenceapproach, in
particular, predicts valley structures along the lines

x = kV t + lL kl = even integer (1)

in spacetime for a particle confined to a one-dimensional box with end walls atx = 0 and
x = L, providing that the energy amplitude differences|ψn − ψn+k| of the wavefunction are
sufficiently small for alln. Herek andl are integers, and

V = πh̄/(2ML) (2)

is a natural speed defined via the particle massM.
The destructive interference approach can be further used to show that the average channel

depth is expected to decrease ask increases (important in resolving the Olbers-type paradox that
all channels can be discerned, given that an infinite number of them are predicted by (1) in any
given spacetime region). Moreover, as shown in the appendix, it may be generalized to predict
the locations of channel and ridge structures for particles moving inarbitrary one-dimensional
potentials, with results in agreement with [5].

However, the above approach isnot able to explain a number of other observed features.
First, it is completely silent on the location of structures when the condition of small energy
amplitude differences is not met. Second, as will be shown by example, it fails to predictall
observed channel and ridge structures even when this conditionis met. Finally, the approach
yields no information on the shapes and widths of the various structures. A new approach is
thus clearly called for.

Such an approach is developed in section 3, based on a representation of the probability
landscape as a superposition of travelling waves with velocities which are integer multiples of
V , propagating against a constant background. The primary usefulness of this decomposition
is that theaverageof the probability distribution along any given direction in spacetime
(e.g., corresponding to a channel or ridge) is described by, at most, asingle one of these
travelling waves. In particular, the wave corresponding to velocitykV provides specific,
exact information on the average locations, shapes, depths and widths of all channel and ridge
structures with slopekV . Connections with the destructive interference approach are briefly
discussed.

The averaging ofP(x, t) along particular spacetime directions, to predict locations
of corresponding channel structures, was first (independently) suggested by Berry and
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Bodenschatz [8] in the optical grating context, who were also motivated by limitations of
the destructive interference approach. That these averages arise naturally from a travelling-
wave decomposition ofP(x, t), and can hence be simply superposed to recover the complete
probability landscape (and to approximate it with arbitrary accuracy by considering only waves
up to a given maximum speed) has not previously been realized.

In section 3 it is shown further that each travelling wave can be written as the sum of two
Wigner functions plus an energy amplitude term. This form is useful for calculations, and for
showing how localization and symmetry properties of the initial probability distribution can
enhance or suppress carpet patterns. In section 4 predictions are verified via the examples of a
uniform initial wavefunction and an approximately Gaussian initial wavefunction, for which
analytic expressions are obtained for the travelling waves.

Generalizations of the results to periodic optical gratings and to the quantum rigid rotator
are given in section 5, with conclusions presented in section 6.

2. Destructive interference approach

2.1. Derivation

Berry derived the locations of channel structures of a one-dimensional particle moving freely
between two end walls, for the case of auniform initial wavefunction [2]. Here his derivation
is generalized to predict the quantum carpet structure for a broad class of initial wavefunctions,
and in the appendix it is shown how this approach may be further generalized to predict the
curved carpet structures corresponding toarbitrary one-dimensional potentials.

Schr̈odinger’s equation for a free particle of massM confined to the interval(0, L), under
the usual boundary conditions that the wavefunction vanishes at the endpoints, has the general
solution

ψ(x, t) = (2/L)1/2
∞∑
n=1

ψne
−iπn2V t/L sinnπx/L (3)

= −i/
√

2L

[ ∞∑
n=1

ψne
iφ+(x,t,n) −

∞∑
n=1

ψne
iφ−(x,t,n)

]
(4)

whereψn denotes thenth energy amplitude,V is the speed defined in (2), and the phasesφ±
are given by

φ±(x, t, n) = (±nx − n2V t)π/L. (5)

The position amplitudeψ(x, t), and hence the position probability distributionP(x, t) =
|ψ(x, t)|2, will be small if partial cancellation can be arranged between the two summations
in (4). This is possible, in particular, if the term corresponding to summation indexn in the
first summation partially cancels with the term corresponding to summation indexn + k in the
second summation, wherek is some fixed integer. Indeed, it is not difficult to show that (4)
can be rearranged (to within an overall phase factor) as

ψ(x, t) = (2L)−1/2
∞∑
n=1

[ψn+|k|eiφ±(x,t,n+|k|) − ψneiφ∓(x,t,n)] + (2L)−1/2
|k|∑
n=1

ψne
iφ±(x,t,n) (6)

where the upper (lower) phase subscript is chosen whenk is positive (negative). Thus
significant cancellation between energy amplitudes can take place in the first summation,
leading to a small value ofP(x, t), providing that the phase-matching condition

φ+(x, t, n + k) = φ−(x, t, n) (mod 2π) (7)
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is met for alln.
It is the phase condition (7) which leads to (1). In particular, note that channel structures

in the probability landscape correspond to spacetime trajectoriesx(t) along which the position
probability density is relatively low, and hence in particular to trajectories for which the phase
condition (7) is satisfied at all points. Substituting (5) into (7), differentiating with respect to
time, and comparing consecutive values ofn, yields the conditioṅx(t) = kV for the slope
of such a trajectory. Substitutingt = 0 in (7) further yields, on comparison for consecutive
values ofn, condition (1).

Note that while condition (1) thus follows from destructive interference between pairs
of energy amplitudes in (6), two further conditions are also generally necessary for channel
structures to be observed. In particular, substitution of (1) into (6) gives the expression

ψ(kV t + lL, t) = (2L)−1/2
∞∑
n=1

(−1)nl(ψn+|k| − ψn)e−in(n+|k|)πV t/L

+(2L)−1/2
|k|∑
n=1

(−1)nlψne
−in(n−|k|)πV t/L (8)

for the position amplitude along the trajectory. Thus for the trajectory to correspond to a
channel one requires further that (i)the differences|ψn − ψn+|k|| are small, and (ii) |k| itself
is sufficiently small. These requirements guarantee that the first and second summations in (8)
yield, respectively, relatively small contributions to the total amplitude, and hence toP(x, t).
They hold for a wide group of initial wavefunctions, as discussed in section 2.3, and hence
condition (1) has a wide predictive power.

2.2. Channel depths and ridge heights

Equation (8) leads to a simple estimate of channel depth. In particular, the quadraticn-
dependence of the phases in (8) implies that they are quasi-random in time, and hence the
average probabilty density along a given channel can be estimated as

P(kV t + lL, t) ≈ (2L)−1
∞∑
n=1

|ψn − ψn+|k||2 + (2L)−1
|k|∑
n=1

|ψn|2

= L−1

(
1−

∞∑
n=1

Re{ψ∗nψn+|k|}
)
. (9)

Note that for slowly varying energy amplitudes this expression will typically increase as
|k| increases, i.e., deep channels correspond to small values of|k|. It will be seen, in section 3,
that this expression is close to the exact average depth of the channel.

A particularly simple example is when the initial wavefunction is an equally weighted
superposition ofN consecutive energy eigenstates, i.e.ψn = 1/

√
N for M < n 6 M + N

andψn = 0 otherwise, for someM > 0. From (8) it follows that relatively good destructive
interference takes place for|k| � N , and from (9) that the average density along a channel is
approximately given by|k|/(NL). Thus deep channels correspond to small values of|k|, as
expected. Note, moreover, from (8), that destructive interference is impossible for|k| > N ,
and hence only a finite number of channels can be observed in this case. A previous analytic
study of this example forM = 0 confirms these results [3].

Constructive interference between energy amplitudes in the first summation in (6)
corresponds to addingπ to one side of the phase-matching condition (7). It follows that
constructive interference takes place along trajectories as per (1), except that the productkl
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is now restricted to beodd. Thus ‘ridges’ are predicted along such lines in the probability
landscape, in agreement with numerical observations [1–5, 9]. Moreover, the average height
of these ridges may be estimated similarly to the channel depths above, yielding an expression
similar to (9) but with subtraction replaced by addition. Thus, for the above example, the
average ridge height is predicted to be(2N − |k|)/(NL) for |k| � N .

Finally, note that fluctuations of channel depth along a given channel are constrained to
be small, simply because they are bounded by the relatively small average probability density
(which must remain positive along the channel). In contrast, fluctuations of ridge height are
only bounded by the relatively large average ridge height, and indeed are expected to be of the
same order from the quasi-random nature of the phases appearing in the analogue of (8) for
constructive interference (where the minus sign in the first summation is replaced by a plus
sign). It is these relatively large fluctuations which lead to the observed generic ‘chopped’
nature of ridge structures [3].

2.3. Examples

The usefulness and limitations of the generalized destructive interference approach is
investigated here via two generic examples. It will be shown, in particular, that channels
are expected as per (1) for well-localized initial wavepackets; and conversely that destructive
interference fails to account for all observed channels in the case of wavepackets with
periodically spaced energy amplitudes.

Example (i): momentum amplitudes and localized wavepackets.The probability landscapes
of wavefunctions initially well localized in a one-dimensional box have been studied in a
number of special cases [3–5,9]. Here it is shown that the destructive interference approach is
applicable to the prediction of channel locations forall initial wavepackets which have a slowly
varying momentum amplitude distribution, and for well-localized wavepackets in particular.

Let ψ̃(p) denote the momentum amplitude distribution of the initial wavepacket, i.e.

ψ̃(p) = (2πh̄)−1/2
∫ ∞
−∞

e−ipx/h̄ψ(x, 0) dx. (10)

It follows from (3) and (10), recalling thatψ(x, 0) vanishes outside the interval(0, L), that
the energy amplitudesψn can be expressed as

ψn = (2/L)1/2
∫ L

0
sin(nπx/L)ψ(x, 0) dx (11)

= i(πh̄/L)1/2[ψ̃(nπh̄/L)− ψ̃(−nπh̄/L)]. (12)

From (8) and (12) it follows the destructive interference approach predicts channels of slope
kV , as per (1),providing that the momentum amplitude distributionψ̃(p) varies sufficiently
slowly over any range of length|k|πh̄/L.

In particular, if the initial wavepacketψ(x, 0) is smooth and well localized within the
box then the momentum amplitude distribution will typically be broad, with root-mean-square
variance1p, say. Thus channels of slopekV are predicted for

|k|πh̄/L� 1p. (13)

Noting that the Heisenberg uncertainty relation implies that1p > h̄/(21x), one, in
particular, expects to see channels of slopekV for all smooth localized wavepackets such
that |k| � L/(2π1x). These general predictions are well borne out by the approximately
Gaussian initial wavepackets studied previously [1,4–9].
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Example (ii): periodically spaced energy amplitudes.The second example to be considered
here is the case where the non-zero energy amplitudes of the wavefunction are periodically
spaced, i.e.,

ψn = 0 for n 6= r modp (14)

for some periodp and fixed integerr.
The casep = 1 is trivial, with channels predicted as per (1) just as before. The case

p = 2 corresponds to initial wavefunctions which are either symmetric or antisymmetric
aboutx = L/2, asr is odd or even, respectively, as can be seen directly from the form of the
wavefunction in (3). The casep = 3, while not of special physical significance, provides a
simple example where the destructive interference approach breaks down.

From (14) it is seen that amplitudesψn andψn+|k| can only destructively interfere in the
first summation in (6) whenk is a multiple of the periodp andn = r modp. Accordingly,
substitutingpk for k and pn + r for n in the phase-matching condition (7) leads to the
modification

x = kpV t + lL/p (k + 2r/p)l = even integer (15)

of (1), for trajectories which correspond to channels in the probability landscape.
Condition (15) is equivalent to (1) forp = 1. More generally, the predicted channel locations
depend upon bothp andr, have slopes which are multiples ofpV , and intersect thex-axis at
multiples ofL/p.

For example, forp = 2 andr = 1 (symmetric initial wavefunctions), it follows that
channels correspond to the trajectoriesx = 2kV t + lL/2, such that(k + 1)l is even. This
prediction is equivalent to equation (52) of [2], obtained there for the special case of an
initially uniform wavefunction.

The casep = 3 provides the simplest example demonstrating an incompleteness of the
destructive interference approach. In particular, consider an initial wavefunction given by the
equally weighted superposition

ψ(x, 0) = N−1/2
N−1∑
n=0

sin[(3n + 1)πx/L]. (16)

This corresponds top = 3 andr = 1 in (14), and hence from (15)no channels starting from
x = L/3 are predicted. However, the density plot of the corresponding probability landscape
for this example, shown in figure 1 forN = 20, shows that a channel of slope−3V is in fact
associated with this starting point. It was the appearance of this unexpected channel which
motivated the new approach to quantum carpets introduced in the next section, which is able
to provide detailed predictions of channel structures forany initial wavefunction.

3. Travelling-wave approach

3.1. Structure function decomposition

It has been seen that the destructive interference approach successfully predicts a number of
generic properties of quantum carpets, including the locations of channel and ridge structures
and their corresponding average depths and heights. It does not, however, yield information on
the shapes and widths of these structures, nor does it predictall observed structures (figure 1)
and, it is, in any case, limited in applicability to wavefunctions with energy amplitudes which
are slowly varying over ranges of length|k|. Thus a new, more general, approach is desirable.
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To introduce such an approach, it is first convenient to rewrite the wavefunction in (3) in
the form [9]

ψ(x, t) = −i(2L)−1/2
∞∑

n=−∞
ψne

i(nx−n2V t)π/L (17)

where one extends the energy amplitude coefficientsψn to negative values ofn via the definition

ψ−n = −ψn. (18)

From (17) one immediately has

P(x, t) = (2L)−1
∞∑

m,n=−∞
ψ∗mψne

−i(m−n)[x−(m+n)V t ]π/L (19)

for the position probability distribution. It may be seen that each term in this summation
either has no spacetime dependence (m = n), or is a plane wave with velocity(m + n)V
(m 6= n). Collecting them = n terms into a constant background term, and grouping terms
corresponding to waves propagating at velocitykV , one obtains the decomposition

P(x, t) = L−1

[
1 +

∞∑
k=−∞

Sk

(
x − kV t
L

)]
(20)

of the probability landscape, where the ‘structure functions’Sk are given by

Sk(z) = 1
2

∞∑
m=−∞

ψ∗mψk−me−i(2m−k)πz − 1
2|ψk/2|2. (21)

Hereψk/2 is defined to be zero whenk is odd.
Equation (20) is the travelling-wave decomposition referred to in the introduction. The

first term,L−1, is a constant background term for the probability distribution, and the structure
functionSk is a real travelling wave travelling at velocitykV . Note thatSk is defined on the
entire real axis, and satisfies the relations

Sk(z + 1) = (−1)kSk(z) S−k(z) = Sk(−z) (22)

where the latter of these follows using (18).
The travelling-wave decomposition (20) provides a physical picture for the generation

of the probability landscapeP(x, t), as the superposition of waves of discrete velocities
propagating in spacetime against a constant background probability. However, the primary
usefulness of this decomposition arises from its relationship to the statistical properties of the
probability landscape.

In particular, from (21), the time average ofSk(z + αt) is equal toSk(z) if α = 0 and
vanishes otherwise. It follows via (20) that the average ofP(x, t) along the linear trajectory
x(t) = x0 + kV t is given by

P(x0 + kV t, t) = L−1[1 + Sk(x0/L)] (23)

for any integerk, and byL−1 whenk is not an integer. Thus the average distribution along any
direction in spacetime involves, at most,onestructure function.

From (23) it is seen thatSk(z) containsall information pertaining to the average
properties of linear structures of slopekV in a quantum carpet. In particular, channel/ridge
structures are associated with those trajectoriesx = x0 + kV t for which x0/L corresponds
to the minima/maxima, respectively, ofSk. Moreover, the average shape of these structures
corresponds to the shape of the associated structure function.
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Figure 2. Plot of 1 + S−3(z) for the initial
wavefunction in (16), withN = 20. From (23),
the sharp minimum in the vicinity ofz =
1
3 corresponds to a channel in the probability
landscape, along the trajectoryx = L/3− 3V t
(as observed in figure 1).

Figure 3. Approximate reconstruction of the
density plot in figure 1 via the travelling-wave
decomposition (20), where only terms with
|k| 6 5 have been included. All linear structures
of slope less than or equal to 5V in magnitude
are successfully reproduced.

3.2. Locations, shapes and widths of linear structures

As an example of (23), 1 +S−3(z) is plotted in figure 2 for the wavefunction (16) (with
N = 20). The deep minimum in figure 2 in the vicinity ofz = 1

3 implies, via relation (23),
that a well-defined channel structure of slope−3V crosses thex-axis atL/3. This channel
is precisely the unexpected channel observed in figure 1, which was not predicted by the
destructive interference approach of section 2. Note also, from figure 2, that a ridge structure
immediately parallel to the left of this channel is also predicted, as indeed, may also be observed
in figure 1. Since the structure functions in (21) can be trivially evaluated as sums of geometric
series for this example, the average properties of all linear structures can, in fact, be calculated
analytically via (23) if desired.

In figure 3 the travelling-wave decomposition (20) is directly illustrated, again for the
wavefunction (16) withN = 20, where only terms with|k| 6 5 have been included in the
summation. Comparison with figure 1 demonstrates that all linear carpet structures with slope
less than or equal to 5V in magnitude are reproduced in figure 3.
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Note, finally, that one can make use of (23) to define the average horizontal width of
a given channel or ridge structure. In particular, suppose such a structure corresponds to a
trajectory passing through thex-axis atx0. Definex+ andx− to be the points to the right and
left, respectively, ofx0 for which the average probability distribution first becomes equal to the
background probabilityL−1. The differencex+−x− is then a natural measure of the horizontal
width of the structure. From (23) these points correspond to the zeros of the structure function
lying either side ofx0/L, wherex0/L itself corresponds to a minimum or maximum of the
structure function. Note for a structure of slopekV that a corresponding measure of width
in the directionperpendicularto the structure is obtained by dividing the horizontal width by
(1 + k2V 2)1/2.

3.3. Wigner function form

Expression (21) for the structure functionSk is not always convenient to use. It generally
involves an infinite summation, and the contributing energy amplitudes are not always easily
calculated. It would therefore be useful to have a formula forSk which is directly related to
the initial wavefunctionψ(x, 0).

To obtain such a formula, first define the normalized wavefunctionφ(x) on the interval
(−L,L) by

φ(x) = 2−1/2[ψ(x, 0)− ψ(−x, 0)] (24)

= L−1/2/(2i)
∞∑

n=−∞
ψne

inπx/L (25)

where the second line follows via (17) and (18). Thusφ(x) is an antisymmetric extension of
the initial wavefunctionψ(x, 0). Now letWφ(x, p) denote the Wigner function ofφ(x) [10]:

Wφ(x, p) = (πh̄)−1
∫ ∞
−∞

dy φ∗(x − y) φ(x + y)e−2ipy/h̄. (26)

For 06 x < L one then has, as shown further below, the remarkable relation

Sk(x/L) = πh̄[Wφ(x, pk) + (−1)kWφ(x − L,pk)] − |ψk/2|2/2 (27)

connectingSk with Wφ , where

pk = πh̄k/(2L) = kMV. (28)

This expression can be trivially extended to evaluateSk(z) for all values ofz via the first of the
relations in (22).

As will be seen below, (27) provides a very convenient method for evaluating structure
functions, and also for analysing the dependence of quantum carpets on various properties of
the initial wavefunction. It may be derived by substituting (24) and (28) into (26) and recalling
thatφ(x) vanishes for|x| > L by definition, thus yielding

4πh̄LWφ(x, pk) =
∑
m,n

ψ∗mψne
−i(m−n)πx/L

∫ M(x)

−M(x)
dy ei(m+n−k)πy/L

= 2
∑
m+n6=k

ψ∗mψne
−i(m−n)πx/L sin[(m + n− k)πM(x)/L]

(m + n− k)π/L
+ 2

∑
m

ψ∗mψk−me−i(2m−k)πx/LM(x)

where

M(x) := max{L− |x|, 0}. (29)

Substitution into the right-hand side of (27) gives (21) as required.
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3.4. Localization and symmetry effects

To see how localization and symmetry properties of the initial wavefunctionψ(x, 0) directly
affect the structure functions, one may substitute (24) and (26) into (27), to obtain

Sk(x/L) = (πh̄/2)[Wψ(x, pk) + (−1)kWψ(L− x,−pk)] − 1
2[Iψ(x, pk) + |ψk/2|2] (30)

for 06 x < L, whereWψ denotes the Wigner function ofψ(x, 0), and the ‘interference’ term
Iψ(x, pk) is given by

Iψ(x, pk) =

∫ ∞
−∞

dy ψ∗(y + x, 0)ψ(y − x, 0)eiky/L + c.c 06 x 6 L/2

(−1)kIψ(L− x,−pk) L/2< x < L.
(31)

Note that (30) is formally similar to the terms which appear in the decompositions of the
probability densityP(x, t) in equation (16) of [4] and equation (41) of [11]. However, the
latter decompositions involve doubly infinite sums rather than a single sum as in (20), are not
directly related to average properties ofP(x, t) along linear trajectories, differ in the form of
the interference term forx > L/2 and do not have energy amplitude terms corresponding to
the last term of (30).

Now, for example, suppose that the initial wavefunctionψ(x, 0) is well localized about
some pointx0 6= 1

2. The corresponding Wigner functionWψ(x, p) will then be similarly
localized, and hence from (23) and (30) one predicts (i) a ridge structure associated with the
trajectoryx0+kV t and (ii) a ridge/channel structure associated with the trajectoryL−x0+kV t
for even/odd values ofk. An example verifying this prediction is given in section 4.2 below.

It is also of interest to consider the cases of trajectories of the formx = lL + kV t (arising
from the destructive interference approach in section 2). From ( 22), (30) and (31) one has

Sk(l) = (−1)klSk(0)

= (−1)kl+1

[∫ L

0
dx P (x,0) cos(πkx/L) + |ψk/2|2/2

]
(32)

whereP(x, 0) is the initial position probability distribution. The average probability density
along these trajectories is thus almost completelyindependentof the phase structure ofψ(x, 0),
which enters only via theψk/2 term (which is zero for odd values ofk and typically small in
general).

If initial distributionP(x, 0) is well localized within a region(x0− δx, x0 + δx) such that

δx/L� |k|−1 (33)

then from (32) the average probability density alongx = lL + kV t is essentially determined
by the properties of the cosine function cosπkx0/L. For example, ifx0 satisfies

kx0/L = j (34)

for some integerj , then from (23) and (32) one has

P(lL + kV t, t) ≈ (1− (−1)j+kl)/L (35)

corresponding to channel and ridge structures asj + kl is even and odd, respectively (the
ψk/2 term has been ignored in (35), as from (11) it is typically negligible for localized
wavefunctions). Similarly, ifj is replaced byj + 1

2 in (34) then the(−1)kl+j term in (35)
vanishes, and any linear structure associated with the trajectory is suppressed.

Finally, rather than supposing the initial distribution to be well localized, consider instead
the case whereP(x, 0) has an approximate reflection symmetry about some pointx∗, i.e.,

P(x∗ + x, 0) ≈ P(x∗ − x, 0). (36)
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Noting thatP(x, 0) vanishes outside(0, L) one then has, from (32), that

(−1)klSk(l) ≈ −
∫ ∞

0
dx P (x∗ + x, 0)[cosπk(x∗ + x)/L + cosπk(x∗ − x)/L] − |ψk/2|2/2

= − 2 cos
πkx∗

L

∫ ∞
0

dx P (x∗ + x, 0) cos
πkx

L
− 1

2
|ψk/2|2. (37)

Thus the structure function is modulated by the cosine function cosπkx∗/L. Linear structures
associated with the trajectoriesx = kV t+lL are therefore enhanced whenkx∗/L = j for some
integerj , and suppressed whenkx∗/L = j + 1

2. Examples of such enhancement/suppression
are given in section 4.

3.5. Connection with destructive interference

Since from (23) the structure functions are real, one can rewrite (21) as

4Sk(z) + 2|ψk/2|2 = 2
∞∑

m=−∞
Re{ψ∗mψk−me−i(2m−k)πz}

=
∞∑

m=−∞
{|ψk−m +ψmei(2m−k)πz|2 − |ψk−m|2 − |ψm|2}.

Replacingm bym + k in the first term of this sum and using (18) then gives

Sk(z) = 1
4

∞∑
m=−∞

|ψm − ψm+ke
i(2m+k)πz|2 − 1

2|ψk/2|2 − 1. (38)

The above expression clearly indicates a link between the structure functionSk and
interference of the amplitudesψm andψm+k. Further, this interference is seen to bedestructive
when z = l for some integerl with kl even, leading to a local minimum of the structure
function for slowly varying energy amplitudes. Thus, noting (23), condition (1) for channel
structures may be recovered. The destructive interference approach is thus a special case of
the travelling-wave approach, where condition (1) corresponds to particular minima of the
structure functions (atz = l) for the case of slowly varying energy amplitudes.

Finally, (18) and (38) can be used to rewrite (23) in terms of energy amplitudesψm with
m > 0, to give

P(kV t + lL, t) = L−1Re

{
1−

∞∑
m=1

ψ∗mψm+|k| + 1
2

|k|−1∑
m=1(m 6=|k|/2)

ψ∗mψ|k|−m

}
(39)

along the trajectories in (1). Thus the approximation in (9) is seen to be quite good for small
|k|, and indeed is exact for|k| equal to 1 or 2.

4. Examples

4.1. Uniform initial wavefunction

The caseψ(x, 0) = L−1/2 on (0, L) was considered by Berry [2], who showed that
the corresponding probability landscape was a fractal and explained the observed channel
structures via destructive interference (example (ii) of section 2.3). For this case it follows
from (11) and (18) that

ψn = 2
√

2/(nπ) (40)
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Figure 4. The structure functionsS2(z) (solid
curve), S4(z) (dot-dashed curve) andS6(z)

(dotted curve) for the case of a uniform initial
wavefunction, plotted via (41).

for oddn, with ψn vanishing for evenn. The structure functionS2k(z) can be evaluated via
any of (21), (27) or (30), to give

S2k(z) = 2(πk)−1 sin[2πkmin{z, 1− z}] − δk0 − |ψk|2/2 (41)

for 0 6 z < 1, whereδkl is the Kronecker delta and sin[x]/x is evaluated as 1 forx = 0. As
usual, this may be extended to other values ofz via (22).

In figure 4, equation (41) is plotted fork = 1, 2 and 3. It is seen that while channels
are associated with trajectoriesx = 2kV t + lL/2 for even values of(k + 1)l, as predicted
in example (ii) of section 2.3, these channels are relatively broad and shallow. Indeed, the
average probability density along these channels follow from (22), (23) and (41) as just the
background probability 1/L for evenk, and [1− 4/(πk)2]/L for odd k. Channel visibility
thus decreases rapidly as|k| increases.

Since the initial probability distribution is symmetric aboutx∗ = L/2 for this example,
one expects from (37) that channels with slopes of(2k + 1)V are suppressed. Indeed, as is
most easily seen from (38) (recallingψn vanishes for even values ofn), one findsS2k+1(z) ≡ 0.
Henceno linear structures of slope(2k + 1)V are predicted, and (20) and (41) then yield the
surprisingly simple decomposition

P(x, t) = 2
∞∑

k=−∞
(πkL)−1σ(x − kV t) sin[2πk(x − kV t)/L] + [1 − 2σ(x)]/L (42)

of the fractal probability landscape, whereσ(x) is defined to be +1, 0, and−1 as the fractional
part ofx/L is respectively less than, equal to, or greater than1

2.

4.2. Gaussian initial wavefunctions

Consider now the inital wavefunction

ψ(x, 0) = K(2πσ 2)−1/4e−(x−x)
2/(4σ 2) eipx (43)

where 0< x < L andK is a normalization constant. It will be assumed thatσ � x, L− x,
i.e., that the wavefunction is well localized on the interval. One may then make the extremely
good approximationK = 1, so thatψ(x, 0) is effectively a Gaussian wavepacket centred atx

with average momentump.
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Figure 5. The structure functionS1(z) for
the approximate Gaussian initial wavefunction
in (43) with x = L/3 andσ = L/40, for the
casesp = 0 (dashed curve) andp = 15πh̄/L
(solid curve).

Figure 6. Density plot of the probability landscape
for the approximate Gaussian initial wavefunction
in (43) with x = L/3, σ = L/40 andp =
15πh̄/L. The detailed shape of the linear structure
running from the bottom left-hand corner to the
top right-hand corner corresponds to that of the
structure function of figure 5 (solid curve) in the
neighbourhood ofz = 0.

It is easiest to evaluate the structure functions for this case via (30) and (31), where one
makes the (again extremely good) approximation that (43) can be extended over the entire
x-axis. Performing the resulting Gaussian integrals then yields

Sk

( x
L

)
≈ 1

2

[
e
−(x−x)2

2σ2 e
−2σ2(pk−p)2

h̄2 + (−1)ke
−(L−x−x)2

2σ2 e
−2σ2(pk+p)2

h̄2

]

−


e
−x2

2σ2 e
−π2k2σ2

2L2 cos
2

h̄
(pkx − px) 06 x 6 L

2

(−1)ke
−(L−x)2

2σ2 e
−π2k2σ2

2L2 cos
2

h̄
(pkx + p(L− x)) L

2 < x < L.
(44)

The term−(1/2)|ψk/2|2 in (30) has been ignored, as it vanishes for oddk and from (10),
and (12) is only of orderσ/L� 1 for evenk.

The structure functionS1(z) is plotted in figure 5 withx = L/3 andσ = L/40, for the
casesp = 0 (dashed curve) andp = 15πh̄/L (solid curve). In the latter case it is seen that
there is a deep channel associated with the trajectoryx = V t , flanked by a high ridge on the
left and a moderate ridge on the right. Further, from (22) one hasS−1(1 +z) = S1(1− z), and
hence there is, conversely, a high ridge associated with the trajectoryx = L − V t , flanked
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by a deep channel on the right and a moderate channel on the left. These predicted features
following from figure 5 may be directly observed in figure 6, where the probability landscape
corresponding to initial wavefunction (43) is plotted forx = L/3 andp = 15πh̄/L. The
structure functions thus accurately predict the shapes of the observed linear structures.

For thep = 0 case (dashed curve) in figure 5 it is seen that as well as channel and ridge
structures at the endpoints, there is a ridge associated with the trajectoryx = L/3 +V t , and
a channel associated with the trajectoryx = 2L/3 +V t . These latter structures correspond to
the Wigner functionsWψ(x0, pk) andWψ(L − x0, pk) discussed in section 3.4 for localized
wavefunctions, and can again be observed in a plot of the probability landscape (not given
here). The corresponding structures for thep = 15πh̄/L case are observed to be much less
pronounced in figure 5. This is becauseWψ(x, p) is localized aboutp = p, and is thus
relatively small atp = p1.

Gaussian initial wavefunctions also provide an example of the prediction in (35) for well-
localized initial wavefunctions. In particular, from (44) (recalling the assumptionσ � x,
L− x), one finds that

Sk(0) ≈ −e
−π2k2σ2

2L2 cosπkx/L. (45)

Hence (35) follows whenever conditions (33) and (34) are satisfied (withδx = σ andx0 = x).
Further, channels and ridges associated with trajectoriesx = kV t+lLare seen to be suppressed
if πkx/L = j + 1

2 for some integerj . Since Gaussian initial wavefunctions are not only
localized aboutx, but are approximately symmetric aboutx, one may also obtain (45) from (37),
with x∗ = x.

5. Periodic gratings and rigid rotators

Consider now a plane wave of wavelengthλ incident on a one-dimensional periodic grating,
of period 2L in thex direction. In the paraxial approximation the amplitude of the diffracted
light then has the general form

φ̂(x, z) = (2L)−1/2
∞∑

n=−∞
φ̂ne

i(nx−n2V z)π/L (46)

wherez measures distance propagated perpendicularly to the grating, the Fourier coefficients
φ̂n are determined by the initial diffracted waveφ̂(x, 0), andV = λ/(4L).

Clearly (46) is formally similar to (17) for a quantum particle moving freely between
two endwalls, and indeed analogues of quantum carpets in the grating context have been
previously observed and investigated [7,8]. The significant differences between (46) and (17)
are: (i) φ̂(x, z) is periodic on the entirex axis whereasψ(x, t) vanishes outside the interval
(0, L); and (ii) the coefficientŝφn need not be antisymmetric as per (18).

Many of the results in section 3 may be directly translated into the grating context.
For example, the light intensity distributionI (x, z) = |φ̂(x, z)|2 has the travelling-wave
decomposition

I (x, z) = (2L)−1

[
I0 +

∞∑
k=−∞

Ŝk

(
x − kV z

L

)]
(47)

in analogy to (20), whereI0 is the integrated light intensity per period of the grating andŜk is
given by (21) withψn replaced by

√
2φ̂n. Similarly, the analogue of (23) is

I (x0 + kV z, z) = (2L)−1[I0 + Ŝk(x0/L)] (48)



Unravelling quantum carpets: a travelling-wave approach 8289

and thus the structure function̂Sk determines the average locations, shapes, etc of relatively
dark and bright structures of slopekV in thex–z plane. The average intensities in (48) are
precisely the ‘lane contrast functions’ first defined in [8] for predicting the locations of dark
structures.

While one may also write down a result analogous to (27), analternativeWigner function
expression for the structure functions is more useful in the grating context. In particular, define
theperiodicWigner function

Wφ̂(x, p) = π−1
∫ L

−L
dy φ̂∗(x − y, 0)φ̂(x + y, 0)e−2ipy. (49)

This differs from (26) in that̂φ doesnot vanish outside the interval(−L,L). One may then
show, similarly to the proof of (27), that

Ŝk(x/L) = πWφ̂(x, πk/(2L))− |φ̂k/2|2 (50)

whereφ̂k/2 is defined to vanish for oddk.
As an example of (50), suppose that a plane wave is incident on a sinusoidal phase grating,

as studied in [8], i.e.,

φ̂(x, 0) = (I0/2L)1/2 eiα cos(πx/L). (51)

Substitution into (49) and using the standard Bessel integral∫ π

0
dθ cos[kθ − a sinθ ] = πJk(a) (52)

then yields, via (48) and (50),

I (x0 + kV z, z) = I0/(2L)[1 + (−1)kJk(2α sin[πx0/L])− |φ̂k/2|2]. (53)

Here|φ̂k/2| is zero for oddk, and equal toJk/2(α) for evenk [8].
The last term of (53) provides a correction to equation (25) of [8], where the average

intensity along the trajectoryx = x0 + kV z was calculated for the same example. More
generally, (50) provides a convenient way to calculate the structure function directly from the
initial amplitudeφ̂(x, 0), and (47) provides a simple decomposition of the intensity distribution
as a sum of travelling waves.

The above results may be immediately translated into the context of the two-dimensional
quantum rigid rotator, with HamiltonianH = Jz

2/(2I ). In particular, φ̂(θ, t) may be
interpreted as the time-dependent phase amplitude of the rotator, where one takesL = π

andV = h̄2/(2I ). The carpet structures for this case lie on the cylinder generated by the phase
and time coordinatesθ andt .

6. Conclusions

The carpet structure of a quantum particle confined between two endwalls has been greatly
elucidated by the travelling-wave decomposition (20) of the probability density, and the details
afforded by this decomposition are seen to go well beyond the ambit of the destructive
interference approach. In particular, the structure functionsSk in (20) provideall information
pertaining to the average properties of linear structures in the probability landscape, as
demonstrated in the examples of sections 3.2 and 4.

The structure functions may be evaluated either from the energy amplitudes of the
wavefunction, via (21); or from the initial wavefunction, via (27) or (30). The latter formula
permits the dependence of generic features of carpet patterns to be directly determined from
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corresponding properties ofψ(x, 0). Similarly, for the periodic grating and quantum rigid
rotator one may use (50) to directly evaluate structure functions fromφ̂(x, 0).

One advantage remaining to the destructive interference approach is that it may be
generalized to predict the carpet structure of semiclassical wavepackets moving in arbitrary
one-dimensional potentials (see the appendix). It is hoped that a corresponding generalization
of the travelling-wave decomposition (20) can be found.
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Appendix

It will be briefly indicated here how the destructive interference approach of section 2 may
be generalized to predict thecurvedcarpet structures arising in the probability landscapes of
one-dimensional particles moving in general potentials [4–6]. For semi-classical wavepackets
the analysis is very similar to that of section 2.1, and the results agree with those of Kaplan
et al [5] obtained by consideration of degeneracies of the propagator forP(x, t).

Now, for high energies thenth energy eigenstate of a particle moving in a one-dimensional
potentialU(x) with two classical turning points is well approximated as [12]

ψn(x) = 2[M/Tnpn(x)]
1/2 sin

[
h̄−1

∫ x

xn

pn(x) dx + π/4

]
(54)

whereM is the particle mass;Tn,pn(x) andxn are the period, momentum and left-most turning
point respectively of a corresponding classical orbit of energyEn; andEn is implicitly defined
by the Bohr–Sommerfeld rule∮

pn(x) dx = (n + 1
2)2πh̄. (55)

The appearance of the sine function in (54) is analogous to that in (3), and for an initial
superpositionψ(x, 0) =∑ cnψn(x) of such states one can easily obtain the analogue of (6):

ψ(x, t) =
∞∑
n=1

[An+|k|(x)eiφ±(x,t,n+|k|) − An(x)eiφ∓(x,t,n)] +
|k|∑
n=1

An(x)e
iφ±(x,t,n) (56)

where

An(x) = [M/Tnpn(x)]
1/2cn (57)

φ±(x, t, n) = ±h̄−1
∫ x

xn

pn(x) dx − h̄−1Ent ± π/4. (58)

As in (6), the upper (lower) phase subscript is chosen in (56) whenk is positive (negative), and
an overall phase factor has been dropped.

Destructive interference in the first summation in (56), giving rise to a channel structure,
can take place along a spacetime trajectoryxk(t) if the phase condition (7) holds forφ±(x, t, n)
defined in (58) (providing that the amplitude functionsAn(x) in (57) vary sufficiently slowly
with n). Substituting (58) into (7) and differentiating with respect tot yields the condition

dxk(t)

dt
= ± En+|k| − En

pn+|k|(xk) + pn(xk)
(59)
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for the trajectory xk(t), where the +/− sign is chosen according to whetherk is
positive/negative. Moreover, if the trajectory passes though pointx0 at timet0, one requires
from (7) and (58) that[
(En+k − En)t0 −

∫ x0

xn

pn(x) dx −
∫ x0

xn+k

pn+k(x) dx

]
/h̄ = π/2 mod 2π. (60)

For the case of a potential energy which is symmetric aboutx0, this expression may be simplified
via (55) to give

(En+k − En)t0/h̄ = (n + k/2 + 1)π mod 2π. (61)

Channel structures for various potentials have been numerically observed for a number
of examples [4–6], and (59) has been previously derived in [5], via a decomposition of the
probability distribution rather than ofψ(x, t) (which produces an extra set of trajectories,
discarded as ‘classical’). Here it is seen that (59) arises directly from destructive interference
of energy amplitudes, in a manner entirely analogous to the case of the particle in a one-
dimensional box.

It is hoped to further investigate conditions (59) and (60) elsewhere. Here a simple
prediction generated by (59) will be pointed out. In particular, if the energy eigenvaluesEn
increase slowly over ranges of length|k| (at least for values ofn for which the amplitudes
An(x) are significant), andpn(x) varies slowly over such ranges, then from (59) one has
dxk/dt ≈ k(dEn/dn)/(2pn(xk)). Thus, if two channels coresponding to two valuesk andk′

intersect at some point in spacetime, their slopes at the point of intersection are predicted to
be approximately in the ratio

(dxk/dt)/(dxk′/dt) ≈ k/k′. (62)

This provides a simple test of the applicability of this approach to a given quantum carpet
structure: the strongest channels, corresponding to small values of|k|, are predicted to intersect
with slopes related by simple rational numbers. Note from (56) that conditions (59) and (60)
for destructive interference need, in fact, only hold over the range ofn for which the amplitudes
An(x) are significant, to ensure effective destructive interference. This is fortunate, as these
conditions cannot, in general, hold for alln; however, it implies that this approach can, in
general, only be applicable to superpositions of a relatively narrow band of energy eigenstates.
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